Healthcare Services Group Inc
Change company Symbol lookup
Select an option...
HCSG Healthcare Services Group Inc
IBB iShares Nasdaq Biotechnology ETF
NEP Nextera Energy Partners LP
FRAN Francesca's Holdings Corp
CDTI CDTi Advanced Materials Inc
UBER Uber Technologies Inc
MTX Minerals Technologies Inc
PRGS Progress Software Corp
CODA Coda Octopus Group Inc
WAB Westinghouse Air Brake Technologies Corp

Industrials : Commercial Services & Supplies | Small Cap Blend
Company profile

Healthcare Services Group, Inc. provides management, administrative and operating services to the housekeeping, laundry, linen, facility maintenance and dietary service departments of the healthcare industry, including nursing homes, retirement complexes, rehabilitation centers and hospitals located throughout the United States. The Company operates through two segments: housekeeping, laundry, linen and other services (Housekeeping), and dietary department services (Dietary). Its housekeeping service involves the management of a client's housekeeping department, which is responsible for the cleaning, disinfecting and sanitizing resident rooms and common areas of a client's facility. Its dietary services consist of managing the client's dietary department, which is responsible for food purchasing, meal preparation and providing professional dietitian services, including the development of menus that meet the dietary needs of residents.


Last Trade
0.0001 (0.00%)
B/A Size

Market Hours

Closing Price
Day's Change
1.31 (5.64%)
Bid close
Ask close
B/A Size
Day's High
Day's Low
(Heavy Day)

10-day average volume:

Experimental COVID-19 Drug Shows Promise in Preliminary Cell Research

1:45 pm ET September 15, 2020 (PR Newswire) Print

An early study in human cells found that an antiviral drug candidate, Pfizer Inc.'s PF-00835231, may be at least as potent as the drug remdesivir in blocking the reproduction of the virus that causes COVID-19.

PF-00835231 was shown in preliminary research conducted by NYU Grossman School of Medicine and Pfizer to block the action of the viral enzyme 3CLpro (Mpro). This protease cuts up precursors into working proteins necessary for the reproduction of pandemic virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Remdesivir works differently. As a nucleoside analog, it is woven into viral genetic material by the enzyme polymerase, which stops SARS-CoV-2 from copying itself inside human cells. Having been shown to reduce the length of hospital stays in patients with severe respiratory distress, Remdesivir is currently the only antiviral drug authorized for emergency use against COVID-19.

The new study found that, in one set of cell culture experiments, PF-00835231 was statistically more potent in blocking the replication of the pandemic virus (it took 3.3 times more remdesivir than PF-00835231 to fully suppress replication). In a second, arguably more relevant cell model (a 3D reconstruction of the human airway), the researchers found that both treatments were equally effective at blocking viral replication.

Posted online recently on the pre-print server bioRxiv, the study was done in cell culture (including the 3D airway model), cells grown for study in dishes of nutrients, researchers say. Such studies can reveal cellular mechanisms and provide a first look at drug potency, but whether PF-00835231 is effective as a treatment for SARS-CoV-2 infection would need to be confirmed ultimately in human clinical studies.

"Our study provides initial evidence that PF-00835231 is a potentially effective antiviral drug for COVID-19, and paves the way for further studies with this compound," says corresponding study author Meike Dittmann, PhD, assistant professor in the Department of Microbiology at NYU Langone Health. "As the two compounds, PF-00835231 and remdesivir, appear to work differently, the hope is that their effects may be additive, shutting down the viral life cycle at more than one step like the drug cocktails designed over decades to counter HIV and the hepatitis C virus."

The study results also demonstrated that PF-00835231 was effective at blocking SARS-CoV-2 replication in cell studies (in vitro) at 10 to 100 times lower concentrations than other drugs targeting 3CLpro that are currently in development, say the researchers. Still other experiments suggested that both PF-00835231 and remdesivir block viral replication of the two major viral lineages (clades) currently causing infections in the United States.

"While many studies are underway, the current arsenal of specific antiviral drugs against SARS-CoV-2 is extremely limited," says first author Maren de Vries, PhD, a postdoctoral scholar in Dittmann's lab. "The development of a diverse toolbox with different targets to combat SARS-CoV-2 will be important in controlling this disease."

The work is moving more quickly because of work done with 3CLpro inhibitors during the 2003 outbreak of SARS, a relative of the current pandemic virus, which infected 8,098 people globally and killed 774. At that time, the disease declined so quickly that clinical studies were not practical, and so PF-00835231 was never tested clinically. The main protease of the viruses from the 2003 outbreak and the current pandemic are 96 percent identical at the level of their amino acid molecular building blocks, say the authors.

More than One Mechanism

Pfizer designed, manufactured, and supplied PF-00835231. NYU Langone researchers performed the study experiments, building on their extensive research with influenza to design one of the first airway cell culture model systems for the study of SARS-CoV-2.

For the current study, the research team treated the cultured cells with PF-00835231 and remdesivir, and then infected them with SARS-CoV-2 in a secure biosafety facility. After giving the virus a short time to infect cells and replicate, the team used a technique called immunofluorescence to count using a microscope how many airway cells had been infected in one model, and how many new viral particles were shed by infected cells in another.

Both PF-00835231 and remdesivir decreased the overall number of infected cells, or the amount of progeny virus shed by infected cells, along with decreasing observable structure changes in cells known to accompany infection.

Along with Dittmann and de Vries, study authors at NYU Grossman School of Medicine were co-first author Adil Mohamed, Rachel Prescott, Ana Valero-Jimenez, and Ludovic Desvignes. Study authors also included Rebecca O'Connor and Claire Steppan, at Pfizer Discovery Sciences in Groton, CT, Annaliesa Anderson of Pfizer Vaccine Research and Development in Pearl River, NY, and Joseph Binder of Pfizer Oncology Research and Development in San Diego, CA.

The study was funded by Pfizer, the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, and the Vilcek Foundation. The study funding provided by contract from Pfizer is being managed in accordance with the policies and practices of NYU Langone. In addition, the posted study manuscript is currently undergoing scientific peer review for potential publication.

Contact: Gregory Williams, 212-404-3533,

View original content to download multimedia:

SOURCE NYU Grossman School of Medicine

comtex tracking

Earnings Calendar and Events Data provided by |Terms of Use| © 2020 Wall Street Horizon, Inc.

Market data accompanied by is delayed by at least 15 minutes for NASDAQ, NYSE MKT, NYSE, and options. Duration of the delay for other exchanges varies.
Market data and information provided by Morningstar.

Options are not suitable for all investors as the special risks inherent to options trading may expose investors to potentially rapid and substantial losses.
Please read Characteristics and Risks of Standard Options before investing in options.

Information and news provided by ,, , Computrade Systems, Inc., , and

Copyright © 2020. All rights reserved.